书城教材教辅生物技术与工程导论
8928400000026

第26章 细胞工程技术及应用(2)

四、胚胎干细胞伦理学与iPS技术

当前,世界范围内掀起了胚胎干细胞研究的热潮,这一研究不仅带来疾病治疗的新模式,更为人类打开了一扇对生命重新认识的新窗口。然而,为什么我们依然看到胚胎干细胞的研究在社会各领域引发激烈争论,以至于让此领域的研究学者们承受沉重的精神压力,甚至成为美国总统选举的干扰影响因素、联合国大会上讨论的议题?其中最重要的一个原因是关于人类使用胚胎干细胞研究的道德争论,即胚胎是人,还是非人?这也是伦理学上一个最基本的问题,在中西方不同国家,甚至同一个国家的不同民族,由于文化背景和信仰的不同,在人类胚胎这一问题的认识上差别很大。不过,在2007年11月20日,国际权威学术期刊《Science》和《Nature》分别报道了来自京都大学的山中伸弥团队和威斯康星大学的詹姆斯·汤姆森/俞君英团队,通过插入四个特定的基因,即Oct4、Sox2、C-Myc和Klf4,第一次成功地将人体皮肤细胞直接改造为功能与人体胚胎干细胞类似的“诱导多功能干细胞(Induced Pluripotent Stem Cell,iPS细胞)”。这一进展的意义是颠覆性的,该技术不但一定程度上回避了有关胚胎的伦理学争议,更扭转了生命的“时间之钟”,被学术界热议有望未来冲击诺贝尔奖。2009年,华裔女科学家俞君英在iPS技术又获得了更大的突破:即利用非整合型附着体载体(episomal vectors)方法获得了人类iPS细胞,在去除掉附着体后,这些iPS细胞就成为没有外来DNA的iPS细胞,从而解决了可能癌变的问题,为iPS技术在医学上的应用奠定了基础。

第三节 细胞融合与细胞重组

细胞融合和拆合是细胞工程研究领域中一个重要的方面,此方向的研究在植物育种、生物制品制备,以及体细胞的克隆等方面都具有非常重要的作用。

一、细胞融合与细胞重组概述

(一)细胞融合与细胞重组的含义与区别

细胞融合(Cell fusion),是指在外力的作用下,将两个或两个以上的同源或异源(种、属之间)的细胞或原生质体相互接触,从而发生膜融合、胞质融合和核融合并形成杂种细胞的现象,也称细胞杂交(Cell hybridization),一般多研究体细胞杂交。

细胞融合的意义在于打破了物种间隔离,从理论上讲,任何来源的细胞都可以进行此类操作,本技术对于培育动植物新品种,进而获得优良遗传性状,或制备生物制品等研究具有非常重要的应用。

细胞重组(Cell reconstruction),是指借助物理、化学或生物的方法分离细胞的某些结构单元,如原生质、胞质体、核体、线粒体、叶绿体等,再结合细胞融合技术,将不同来源的这些细胞结构单元重新组合,使其重新装配成具有生物活性的细胞或细胞器的一种实验技术。

细胞重组技术的研究为细胞内的基因表达与调控和揭示细胞活动规律提供了一种重要手段,具有重要的理论意义和实践价值。

(二)细胞融合与细胞重组的技术

1.细胞融合技术

进行细胞融合实验之前,需要对实验材料进行相应的处理,如植物或微生物细胞的脱壁,动物组织的消化、悬浮培养及单个细胞的获得。为提高细胞或原生质的融合效果,选择适宜有效的诱导融合方法很重要。当前,诱导融合的方法包括物理法、化学法和生物法。物理法如显微操作、电场刺激等;化学法主要用聚乙二醇PEG结合高pH、高钙离子法;生物法有仙台病毒法等。在具体应用时,可根据不同对象选择适合的方法。

2.细胞重组技术

一般而言,细胞重组的方式包括三种:胞质体与完整细胞重组形成胞质杂种;微细胞与完整细胞重组形成微细胞异核体;胞质体与核体重新组合形成重组细胞。体外培养的细胞经过细胞松弛素B处理而诱发排核,再结合高速离心技术可以制备由膜包裹的无核细胞,即为胞质体,而脱去的细胞核,带有少量的细胞质并围有质膜,称为“核体”。微细胞又称微核体,是指含有一条或几条染色体,外有一薄层细胞质和一个完整质膜的核质体。

二、单克隆抗体

(一)概述

1975年,英国剑桥大学分子生物学研究室的科莱尔(Kohler)和米尔斯坦(Milsteinn)合作将已适应于体外培养的小鼠骨髓瘤细胞与绵羊红细胞免疫小鼠脾细胞(B淋巴细胞)进行融合,发现融合形成的杂交瘤细胞具有双亲细胞的特征:即像骨髓瘤细胞一样在体外培养时能够无限快速增殖,又能持续地分泌特异性抗体,通过克隆化可使杂交细胞成为单纯的细胞系,由此单克隆系就可以获得结构与各种特性完全相同的高纯度抗体,即单克隆抗体。

(二)单克隆抗体的制备

单克隆抗体制备的简要步骤如下:(1)细胞融合前准备。免疫脾细胞和骨髓瘤细胞应来自同一品系的动物。免疫脾细胞一般用最后一次加强免疫3天后的动物的脾脏,制备成细胞悬液备用;骨髓瘤细胞或用复苏的瘤细胞系,或用降植烷处理动物制备瘤细胞;(2)细胞融合与杂交瘤选择。取对数生长期的上述两类细胞按一定比例混合并洗涤后,用PEG介导融合。一般在融合24小时后,加HAT选择杂交瘤;(3)抗体的检测与杂交瘤的选择。通过选择性培养获得的杂交细胞系中,仅有少数能分泌针对免疫原的特异性抗体。因此,常借助酶联免疫吸附分析(Enzyme-Linked immunosorbent Assay,ELISA)、放射性免疫法(Radioimmunoassay,RIA)等进行检测;(4)单克隆抗体的生产。目前,常采用旋转管培养法培养杂交瘤细胞,从上清中制备单克隆抗体。或者,通过体内接种杂交瘤细胞,从其腹水或血清中制备单克隆抗体;(5)单克隆抗体的鉴定。对得到的单克隆抗体,可用免疫原作定性检测。

三、克隆

(一)概述

克隆(Clone),本意是指无性繁殖,现在也可引申为无性繁殖的操作。克隆在植物界历史久远,但理论上的突破则发生在20世纪,即1902年德国植物学家哈伯兰德(Haberlandt)指出植物的体细胞具有母体全部的遗传信息,具有发育成完整个体的潜能,也就是所谓的细胞全能性。1958年,斯图尔德(Steward)成功地将一个胡萝卜细胞在试管中培养,长成了一株具有根、茎、叶等器官的完整植株。由此,植物细胞的全能性得到了充分的论证,植物的细胞和组织培养技术得以迅速发展。然而,已分化的动物细胞是否能够再度产生完整的个体呢?这是个多年来许多生物学研究者争论的问题。早在20世纪30年代,著名胚胎学家斯佩尔曼(Spemann)就提出“分化了的细胞核移入卵子中能否指导胚胎发育”的设想,并成功进行了胚胎细胞核经移植可产生成熟动物个体的实验。直到1997年,伴随着克隆羊“多莉”的诞生,成功证实成熟的体细胞也具有全能性。