书城教材教辅海洋科学知识(青少年科普知识阅读手册)
6555000000007

第7章

海洋开发技术是海洋技术的一个分支,是人类进行海洋开发,实现海洋实际价值所采取的手段的总称,它是海洋开发吸收和消化各种现代科学技术、通用技术,使之适应海洋这个特殊的环境而形成的。按海洋开发的性质,它分为海洋生物资源、油气资源、海底矿产资源、海洋能源、海水综合利用和海洋环境保护等专项开发技术。它为传统海洋产业的改造和新兴海洋产业的迅速发展创造了条件,促进了海洋产业结构的调整。如海洋生物技术促进了海水增养殖业的发展,把传统的“狩猎”式渔业改造为新兴“栽培”式和“放牧”式渔业;深海采油技术不仅加速了海洋油气业的发展,也加速了海洋服务业的发展,使海洋油气业的产值达到占海洋开发总产值一半以上的水平。

海洋通量计划

全球海洋通量计划是一项多学科的国际合作海洋科学研究活动。1984年,美国提出海洋通量研究计划,得到日本、加拿大、法国、德国、英国、中国等30多个国家的支持,于1986年形成全球海洋通量计划。该计划的宗旨是:了解全球范围的海洋生物和海水化学的相互作用过程以及这些过程出现的速率,认识海洋的生物系统和化学系统的变化,为理智地处理人类对全球生态系统的影响而引起的问题提供科学依据。其目标是:认识并定量测定大洋中控制生物地球化学循环的物理、化学和生物过程,估价海洋与大气、海底和陆架边界之间的有关交换量,了解支配海洋中生源物质的生产和归宿的过程,预报其对全球尺度扰动的影响和反应,建立检测海洋中与气候变化有关的生物地球化学循环变化的长期战略。1994年美国发射一颗水色卫星,进行全球海洋水色观测,为估价海洋的二氧化碳固定能力,加深对控制海洋生物生产力机制的理解提供大量数据。

海洋地质和地球物理学

海洋地质和地球物理研究是近几十年里最为活跃的领域之一。在基础理论方面,现代板块构造学说的诞生,在很大程度上是依靠海洋地质和地球物理研究而取得突破。在进入21世纪后的十几年里,国际海洋地质学界关注的问题是从“全球变化”这个层面,探索人类活动之前的地质时期,或宇宙范围内的地球自然环境变化周期和发展趋势。揭示地球系统在漫长的地质演化过程中,水圈与其他圈层的内部反馈机理以及相互作用,预测地球未来的环境变化趋势。

海洋增养殖工程

随着海水增养殖业的发展,与之配套的海水增养殖工程也有很大发展。水产土木工程主要有海洋渔场环境改造、苗种和养殖的围栏工程、过鱼工程等;渔业工程装备主要有工业化养鱼系统、网箱和浮式养殖组合体、新能源利用设备、人工利用上升流装备等。到20世纪90年代,人工鱼礁技术在渔场环境改造方面发挥了重要作用。日本的大型组合式鱼礁、美国的钻井平台和大型船体鱼礁的投放,以及生产管理自动化,把鱼礁技术工程提高到一个新水平。工业化养鱼已经实现了高密度的生产方式,有流水式、半封闭式、循环过滤式。目前,德国、美国、挪威等国为了提高养殖密度,缩短周期,都在研制人工孵化装置、自动投饵设备和水质监控系统。网箱和浮式养鱼组合工程技术是目前的主要海水养殖形式。另外,可升降式网箱、抗扰性网箱等技术先进的养鱼设备相继问世。同时,人们还在这些网箱上安装了提高鱼成活率和生长速度的电解装置,从自动投饵到保护、监控等完全实现了雷达和水下电视机。此外,大型浮动养殖组合体在一些国家已经投入使用。如果把风能、波能、潮汐能和人工上升流技术都直接应用到海水增养殖业中,为水产提供新能源,水产增养殖业将会有更新的发展。

海洋再生能源

浩瀚无垠的海水,拥有巨大的再生能源。世界海洋能的蕴藏量为750多亿千瓦,其中波浪能占93%,达700多亿千瓦,潮汐能10亿千瓦,温差能20亿千瓦,海流能10亿千瓦,盐差能10亿千瓦。这么巨大的能源资源是目前世界能源总消耗量的数千倍,在条件允许的情况下,只要略加开发,就可以满足人们生产、生活的需要。

海上石油物理勘探

海上石油物理勘探一般是在海洋调查船上装备特别的仪器设备,来发现有利于石油聚集的地层和构造。最常用的办法是采用重力勘探,磁力勘探和地震勘探。这些方法只能间接地确定海洋石油在海洋中的位置,究竟海底是否有石油,储量有多大,还必须通过海上钻探这种直接的方法才能证实。

海上平台

固定式生产平台形成了现代海上油田的基本特征。这种平台大都是钢质桩基平台,一般由上部结构、导管架、钢桩三个部分组成。上部结构一般由一个或几个组块组成,组块是生产设施,生活设施及动力设备的大本营。上部结构安装在导管架顶部,通过桩腿连接构件和水泥浆与导管架结合为一个整体。导管架旋转在海底,浸泡在水中。导管架以下部分是钢柱,钢柱全部打入大陆架上通过桩壁与土壤的摩擦力和桩尖提供的承载力,支撑整个平台以及所受到的自然环境荷载,如风力、波浪力、冰力、流力、地震力等。我国于1966年在渤海建成了第一座现代化钻井平台。

海上钻探

海上钻探是油气勘探开发中的重要一环。通过钻探打井所取得的岩心样品来确切掌握海底油气资源的情况。在海上钻井比在陆地上钻井要困难得多。首先是因为海面动荡不定,要保持钻井稳定,就要建造一个高于海面的工作台或者钻井平台,然后在平台上开展钻探活动。海上钻井平台一般有固定式钻井平台和活动式钻井平台。当然也有的国家制造了钻井船,把钻井设备安装在船上进行钻井作业。

海流的分类

海流一旦产生,又会受到海水深度、地形变化等因素的影响。为了研究海流,科学家对海流进行了分类。按照成因,将海流分为风海流、潮流、密度流等,按所处位置又分成沿岸流、赤道流和极地流等,按海流的深度分,又有表层流、底层流之分;人们还根据海流的温度与流经海域的水温相比较,将其分为暖流或寒流。更奇特的是,海流中还有能上能下的上升流和下降流。因此海流一般为三种:由海水密度不同而产生的海水运动为梯度流;在海风作用下,由风的“拉力”作用而使海水产生运动为风海流;由于长波运动产生的海流,包括潮汐、内波、假潮、海啸等产生的海水运动为长波潮流。

海洋食物链

在海洋中,各种生物种群的食物关系,呈食物金字塔的形式。海洋生物学家曾做过这样的研究报告:处在这座生物金字塔最底部的,是各种硅藻类。它们是海洋中的单细胞植物,其数量非常之巨大。我们假定,生物金字塔最底部的硅藻类是454千克。在这一层的上边是微小的海洋食草类动物,或者叫浮游动物。这些动物是以硅藻为食而获取热量。这一层的动物要维持其正常生活,需食用45.4千克硅藻。那么,再上一层是鲱鱼类,鲱鱼为获取热量,维持生命,需食用4.54千克的浮游动物。当然,鲱鱼的存在又为鳕鱼提供食物,显然,鳕鱼又是更上一层动物的食物了。鳕鱼为获取热量和正常生活,需要食用454克的鲱鱼为食。不难看出,每上升一级,食物以10%的几何级数减少;相反,每下降一级,其食物量又以10%几何数而增加。呈一个下大上小的金字塔型。通过海洋食物网建起的金字塔,经过4~5级的能量依次转移,维持各生命群体之间的平衡。当接近海洋食物金字塔的顶端时,生物的数目比起底部来说,变得非常之少。在海洋中,处在顶部的是海洋哺乳类,如海兽等。

在海洋中生活着数十万种动物,在这些动物中,除虎鲸和鲨鱼等凶猛的食肉动物之外,绝大多数的鱼类都是“和平共处”,相安无事,因此,海洋动物实际上是地球上种类和数量最多的动物。说起来令人难以置信,地球上最大的动物——鲸类(须鲸),是以海洋中几乎是最小的动物——小鱼和磷虾为食。这看上去似乎有些不合情理,但是,细细研究一下它们之间的特殊关系,又感到这是情理之中的事。在海洋中,磷虾不仅数量巨大,而且聚集在一起密度也很高。它们似乎是按照某种“指令”,聚集成一团又一团,专等须鲸来食用。否则的话,身躯庞大的须鲸,整日在茫茫海洋中,疲于奔命,寻找捕获食物,无论如何是无法填饱肚子的。同样,磷虾以其顽强的生命,特有的繁殖力,建立起最为庞大的密集群体,源源不断为须鲸提供食物。这一切,似乎是经过上帝精心设计安排好的。亿万年来,这种奇特的金字塔式的生物种群间的关系,维系海洋生物种群间的生命存在方式。这种生命维系关系,称之为海洋食物链,或称海洋食物网。

海洋食物链的方式

一种是放牧食物链。这种食物链是从绿色植物,例如浮游植物类等,转换到放牧的食草动物中,并以食活的植物为生,顶端是以食肉生物为最后的终点。这个过程,就是我们时常说的“大鱼吃小鱼,小鱼吃虾米,虾米吃泥土(浮游生物)”。

第二种形式是腐败或腐质食物链。这一食物的转移方式是:从死亡的有机物开始,得到微生物,并以摄食腐质的生物为生的捕食者为最终点。实际上,在海洋中,这种类型的食物链之间,是相互连接的;有时也不是非按某种特定方式来进行,而是有交叉、有连接、多种方式混合进行的。

海洋生态系

海洋生态系是海洋中由生物群落及其环境相互作用所构成的自然系统。广义而言,全球海洋是一个大生态系,其中包含许多不同等级的次级生态系。每个次级生态系占据一定的空间,由相互作用的生物和非生物,通过能量流和物质流形成具有一定结构和功能的统一体。海洋生态系的分类,目前无定论,按海区划分,一般分为沿岸生态系、大洋生态系、上升流生态系等;按生物群落划分,一般分为红树林生态系、珊瑚礁生态系、藻类生态系等。

海洋生态系研究开始于20世纪70年代,一般涉及自然生态系和围隔实验生态系等领域。近几十年,以围隔(或受控)实验生态系研究为主,主要开展营养层次、海水中化学物质转移、污染物对海洋生物的影响、经济鱼类幼鱼的食物和生长等研究。

海水提取溴

海水提溴是从海水中提取元素溴的技术。溴及其衍生物是制药业和制取阻燃剂、钻井液等的重要原料,需求量很大。国外从1934年开始海水提溴试验和开发,目前日本、法国、阿根廷和加拿大等国家和地区已建有海水提溴工厂,年产量基本保持在36万吨的水平。中国从1966年开始海水提溴,至今仍处于小型试生产的规模。海水提溴技术有水蒸气蒸馏法、空气吹出法、溶剂萃取法、沉淀法、吸附法等,其中空气吹出法和水蒸气蒸馏法为国内外所普遍采用。空气吹出法的基本流程是酸化→氧化→吹出→吸收→蒸馏;吸收工艺普遍采用碱吸收和一氧化硫吸收,吸收剂有碱、硫、铁屑、溴化钠等。

海水提锂

海水提锂是从海水中提取元素锂的技术。元素锂与钠、镁共存,提取技术难度较大,许多国家从事海水提锂技术研究。日本、以色列等国创造海水提锂吸附法,所选用的吸附剂有氢氧化铝吸附剂、氢氧化铝-活性炭复合吸附剂、氧化锰-活性炭复合吸附剂及各种树脂吸附剂等,其中无定型氢氧化铝吸附剂的吸附能力较强,性能较优越。日本工业技术院四国工业技术试验所近年来研制成功多孔质氧化锰吸附剂,吸附能力比常规锂吸附剂高5~10倍。这种新型吸附剂采取多微孔结构,能选择性吸附海水中的锂,经稀盐酸处理3小时,能解释95%以上被吸附的锂。

海水提铀技术

海水提铀是从海水中提取原子能工业铀原料的技术。海水中铀的蕴藏量约45亿吨,是陆地上已探明的铀矿储量的2000倍,但是浓度极低。所以海水提铀成本比陆地贫铀矿提炼成本高6倍。从20世纪60年代开始,日本、美国、法国等国家从事海水提铀的研究和试验,一般采用三种方法:

(1)吸附法:使用水合氧化钛、碱式碳酸锌、方铅矿石和离子交换树脂等吸附剂吸附海水中微量的铀;

(2)生物富集法:使用专门培养的海藻富集海水中微量的铀。据试验,某些海藻铀的富集能力很大,其铀含量甚至超过低品位铀矿的含铀量;

(3)起泡分离法:在海水中加入一定量的铀捕集剂如氢氧化铁等,然后通气鼓泡,分离海水中的铀)。

日本是世界上第一个开发海水铀源的国家。日本是一个贫铀国,铀埋藏量仅有8000吨,因此日本把目光瞄向海洋。从1960年起,日本加快研究从海水中提取铀的方法。1971年,日本试验成功了一种新的吸附剂。除了氢氧化钛之外,这种吸附剂还包括有活性碳。日本已于1986年4月在香川县建成了年产10千克铀的海水提取厂。日本还制定了进一步建造工业规模的海水提铀工厂的计划,到2000年前年产铀达1000吨。

海洋金属砂矿

最早开采海洋金属砂矿的是美国。20世纪初,美国在阿拉斯加开设了诺姆砂金矿。这个矿沿诺姆海岸延伸5千米,矿层宽90米,厚0.3~0.9米;在岸上也有两层砂金砂,其中一层厚0.15米,另一层厚1.5~3米,诺姆砂金矿的平均含量高达5.2克/吨~50克/吨,是当今世界上最大的滨海砂金矿之一。

在白令海和阿拉斯加近海,人们在那里发现了长达数百千米的白金砂矿,是陆地上任何河流砂白金矿所望尘莫及的。

美国最重要的白金开采区是古德纽斯湾,它的开采量约占全国开采量的90%,每年大约可采2吨。在目前已探明的金属砂矿总储量中,占第一位的是钛铁矿。钛铁矿是名副其实的含铁的沙子,可以用来炼制钛铁合金。其次为钛磁铁矿;再次为磁铁矿。

日本南部九洲岛附近的浅海内发现了一个巨大的磁铁矿层。这座世界上最大的磁铁矿,储量在17亿吨以上。泰国普吉岛附近的锡砂矿。俄罗斯境内的拉普帖夫海和东西伯利亚海,英国的康沃尔近海也有较丰富的锡砂矿分布。美国加利福尼亚沿岸发现了总储量大约15亿吨的磷矿石;苏联科学家在日本海大陆架也发现有大磷矿。

此外,在墨西哥湾和南非的西海岸也发现了储量较富的磷钙石矿。当今世界开采独居石的地区主要在斯里兰卡和印度海滨5~70米深的海域中。印度是世界上独居石蕴藏量最多的国家之一,独居石藏量为200万吨。

海洋药物学